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a b s t r a c t 

In this paper, we investigate the problem of video-based kinship verification via human face analysis. 

While several attempts have been made on facial kinship verification from still images, to our knowledge, 

the problem of video-based kinship verification has not been formally addressed in the literature. In this 

paper, we make the two contributions to video-based kinship verification. On one hand, we present a 

new video face dataset called Kinship Face Videos in the Wild (KFVW) which were captured in wild 

conditions for the video-based kinship verification study, as well as the standard benchmark. On the 

other hand, we employ our benchmark to evaluate and compare the performance of several state-of-the- 

art metric learning based kinship verification methods. Experimental results are presented to demonstrate 

the efficacy of our proposed dataset and the effectiveness of existing metric learning methods for video- 

based kinship verification. Lastly, we also evaluate human ability on kinship verification from facial videos 

and experimental results show that metric learning based computational methods are not as good as that 

of human observers. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Kinship verification from human faces in a relatively new prob-

em in biometrics in recent years. The key motivation of this re-

earch topic is from the research observations in results in psy-

hology and cognitive sciences [1–4] where human faces convey

n important cue for kin similarity measure because children usu-

lly look like their parents. Verifying human kinship relationship

as several potential applications such as image annotation, fam-

ly album organization, social media mining, and missing children

earching. Over the past few years, a number of kinship verifica-

ion methods have been proposed in the literature, which aims to

resent effective computational models to verify human kinship

elations via facial image analysis [5–17] . While these methods

ave achieved some encouraging performance [5–13,15,18] , it is

till challenging to develop discriminative and robust kinship ver-

fication approached for real-world applications, especially when

ace images are captured in unconstrained environments where

arge variations of pose, illumination, expression, and background

ccurs. 

Most existing kinship verification methods determine human

inship relationship from still face images. Due to the large vari-

tions of human faces, a single still image may not be discrimina-
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ive enough to verify human kin relationship. Compared to a sin-

le image, a face video provides more information to describe the

ppearance of human face. It can capture the face of the person of

nterest from different poses, expressions, and illuminations. More-

ver, face videos can be much easier captured in real applications

ecause there are extensive surveillance cameras installed in pub-

ic areas. Hence, it is desirable to employ face videos to determine

he kin relations of persons. However, it is also challenging to ex-

loit discriminative information of face videos because intra-class

ariations are usually larger within a face video than a single sill

mage. 

In this paper, we investigate the problem of video-based kin-

hip verification via human face analysis. Specifically, we make

he two contributions to video-based kinship verification. On one

and, we present a new video face dataset called Kinship Face

ideos in the Wild (KFVW) which were captured in wild condi-

ions for the video-based kinship verification study, as well as the

tandard benchmark. On the other hand, we employ our bench-

ark to evaluate and compare the performance of several state-

f-the-art metric learning based kinship verification methods. Ex-

erimental results are presented to demonstrate the efficacy of our

roposed dataset and the effectiveness of existing metric learning

ethods for video-based kinship verification. Lastly, we also test

uman ability on kinship verification from facial videos and ex-

erimental results show that metric learning based computational

ethods are not as good as that of human observers. 

http://dx.doi.org/10.1016/j.patcog.2017.03.001
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http://www.elsevier.com/locate/patcog
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Table 1 

Review and summary of existing representative kinship verification methods in 

the literature. 

Method Characteristics Type Year 

Fang et al. [5] Local feature representation image 2010 

Zhou et al. [6] Local feature representation image 2011 

Xia et al. [7] Transfer subspace learning image 2012 

Guo and Wang [9] Bayes inference image 2012 

Zhou et al. [10] Local feature representation image 2012 

Kohli et al. [18] Local feature representation image 2012 

Somanath et al. [11] Local feature representation image 2012 

Dibeklioglu et al. [19] Dynamic feature representation image 2013 

Lu et al. [13] Distance metric learning image 2014 

Guo et al. [14] Logistic regression image 2014 

Yan et al. [15] Multi-metric learning image 2014 

Yan et al. [20] Mid-feature learning image 2015 

Our work Distance metric learning video 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Compassion of existing facial datasets for kinship verification. 

Dataset Number of kinship pairs Type Year 

CornellKin [5] 150 image 2010 

UB KinFace [7] 400 image 2012 

IIITD Kinship [18] 272 image 2012 

Family101 [12] 206 image 2013 

KinFaceW-I [13] 533 image 2014 

KinFaceW-I [13] 10 0 0 image 2014 

TSKinFace [66] 2030 image 2015 

KFVW (Ours) 418 video 
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The rest of this paper is organized as follows. In Section 2 , we

briefly review some related work, and Section 3 introduces the

Kinship Face Videos in the Wild (KFVW) dataset. Section 4 presents

some popular metric learning methods which have been widely

used in kinship verification. Section 5 presents the experimental

results and analysis. Finally, Section 6 concludes this paper. 

2. Related work 

In this section, we briefly review the related topics to our work:

(1) kinship verification, (2) metric learning, and (3) video-based

face analysis. 

2.1. Kinship verification 

The first study on kinship verification from facial images was

made in [5] . In their work, they extracted local features such as

skin color, gray value, histogram of gradient, and facial structure

information in facial images and select some of them for kin-

ship verification. Since this seminal work, more and more kin-

ship verification methods have been proposed in the literature [5–

7,9,10,13,15,18–23] . These methods can be mainly categorized into

two classes: feature-based [5,6,9,10,19] and model-based [7,13–15] .

Methods in the first class extract discriminative feature descriptors

to represent kin-related information. Representative such feature

information include skin color [5] , histogram of gradient [5,6,11] ,

Gabor wavelet [7,10,11,24] , gradient orientation pyramid [10] , local

binary pattern [13,25] , scale-invariant feature transform [11,13,15] ,

salient part [8,9] , self-similarity [18] , and dynamic features com-

bined with spatio-temporal appearance descriptor [19] . Methods in

the second class learn discriminative models to verify kin relation-

ship from face pairs. Typical such models are subspace learning [7] ,

metric learning [13,15] , transfer learning [7] , multiple kernel learn-

ing [10] and graph-based fusion [14] . Table 1 lists a review and

summary of existing representative kinship verification methods

in the literature. All these kinship verification methods determine

human kinship relationship from still face images, which may not

discriminative enough to verify human kin relationship since large

variations of human faces usually occur in still images. 

2.2. Metric learning 

A variety of metric learning methods [26–28,28–52] have been

widely used in numerous computer vision tasks such as face recog-

nition [26,28] , gait recognition [34] , object recognition, human

activity recognition [29] , human age estimation [30] , person re-

identification [28,31,32] , visual tracking, and visual search. These

methods can be mainly classified into two classes: unsupervised

and supervised. The first class of methods learn a low-dimensional
anifold to preserve the geometrical structure of data points, and

he second class of methods seek an appropriate distance met-

ic to exploit the discriminative information of samples. Recently,

etric learning techniques have also been used in kinship verifi-

ation [13,15] , these methods are strongly supervised and require

he exact label information of samples. For kinship verification, it

s more convenient to obtain the weakly supervision of samples

o that it is desirable to employ and evaluate weakly supervised

ethods for kinship verification. 

.3. Video-based face recognition 

A variety of video-based face analysis methods have been pro-

osed in the literature, and these methods can be mainly classi-

ed into parametric [53–56] and nonparametric [57–65] methods.

arametric methods represent each face video as a parametric fam-

ly of probabilistic distribution, and use the Kullback–Leibler diver-

ence to measure the similarity of two face videos. However, these

ethods usually fail when the underlying distributional assump-

ions do not hold for different face videos. Nonparametric methods

xploit geometrical information to measure the similarity of two

ace videos by modeling face each video as a single linear subspace

r as the union of linear subspaces. While a variety of video-based

ace recognition methods have been presented, there is no work

n video-based kinship verification, probably due to the lack of

uch datasets. In this work, we fill this gap and contribute a video

ataset for kinship verification. 

. The kinship face videos in the wild dataset 

In past few years, several facial datasets have been released to

dvance the kinship verification problem, e.g., CornellKin [5] , UB

inFace [7] , IIITD Kinship [18] , Family101 [12] , KinFaceW-I [13] ,

inFaceW-II [13] , TSKinFace [66] , etc. Table 2 provides a summary

f existing facial datasets for kinship verification. However, these

atasets only consist of still face images, in which each subject

sually has a single face image. Due to the large variations of hu-

an faces, a single still image may not be discriminative enough

o verify human kin relationship. To address these shortcomings,

e collected a new video face dataset called Kinship Face Videos

n the Wild (KFVW) for the video-based kinship verification study.

ompared to a still image, a face video provides more information

o describe the appearance of human face, because it can easily

apture the face of the person of interest from different poses, ex-

ressions, and illuminations. 

The KFVW dataset was collected from TV shows on the Web.

e totally collected 418 pairs of face videos, and each video con-

ains about 100 – 500 frames with large variations such as pose,

ighting, background, occlusion, expression, makeup, age, etc. The

verage size of a video frame is about 900 × 500 pixels. There

re four kinship relation types in the KFVW dataset: Father-Son (F-

), Father-Daughter (F-D), Mother-Son (M-S), and Mother-Daughter

M-D), and there are 107, 101, 100, and 110 pairs of kinship face

ideos for kin relationships F-S, F-D, M-S, and M-D respectively.
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Father-Son

Father-Daughter

Mother-Son

Mother-Daughter

Fig. 1. Sampled video frames of our KFVW dataset. Each row lists three face images 

of a video. From top to bottom are Father-Son (F-S), Father-Daughter (F-D), Mother- 

Son (M-S) and Mother-Daughter (M-D) kin relationships, respectively. 

F  

s  

o  

g  

t

4

 

a  

t  

i  

v  

f  

b  

(  

T

4

 

N  

p

u  

x

d

w

 

m  

m  

t  

o  

m  

t  

a  

τ  

a  

s  

f

m

i  

i  

t

a  

a  

s  

a  

s

M

i  

l

4

(  

p  

p  

n

C

C

T  

≤

m

B

C

t

W

ig. 1 shows several examples of our KFVW dataset for each kin-

hip relations. We can see that the KFVW dataset depicts faces

f the person of interest from different poses, expressions, back-

round, and illuminations such that it can provide more informa-

ion to describe the appearance of human face. 

. Video-based kinship verification using metric learning 

Metric learning involves seeking a suitable distance metric from

 training set of data points. Following the evaluation and set-

ings used in Ref. [67] , we employ several distance metric learn-

ng methods as baseline methods for the video-based kinship

erification problem. These metric learning methods include in-

ormation theoretic metric learning (ITML) [68] , side-information

ased linear discriminant analysis (SILD) [69] , KISS metric learning

KISSME) [28] , and cosine similarity metric learning (CSML) [70] .

his section briefly presents these metric learning methods. 
.1. ITML 

Let X = [ x 1 , x 2 , · · · , x N ] ∈ R 

d×N be a training set consisting of

 data points, the aim of common distance metric learning ap-

roaches is to seek a positive semi-definite (PSD) matrix M ∈ R 

d×d 

nder which the squared Mahalanobis distance of two data points

 i and x j can be computed by: 

 

2 
M 

(x i , x j ) = (x i − x j ) 
T M (x i − x j ) , (1) 

here d is the dimension of data point x i . 

Information-theoretic metric learning (ITML) [68] is a typical

etric learning method, which exploits the relationship of the

ultivariate Gaussian distribution and the set of Mahalanobis dis-

ances to generalize the regular Euclidean distance. The basic idea

f ITML method is to find a PSD matrix M to approach a predefined

atrix M 0 by minimizing the LogDet divergence between two ma-

rices under the constraints that the squared distance d 2 
M 

(x i , x j ) of

 positive pair (or similar pair) is smaller than a positive threshold

p while that of a negative pair (or dissimilar pair) is larger than

 threshold τ n , and we have τ n > τ p > 0. By employing this con-

traint on all pairs of training set, ITML can be formulated as the

ollowing LogDet optimization problem: 

in 

M 

D ld (M , M 0 ) = tr ( MM 

−1 
0 ) − log det ( MM 

−1 
0 ) − d 

s.t. d 2 M 

(x i , x j ) ≤ τp ∀ � i j = 1 

d 2 M 

(x i , x j ) ≥ τn ∀ � i j = −1 , (2) 

n which the predefined metric M 0 is set to the identity matrix

n our experiments, tr( A ) is the trace operation of a square ma-

rix A , and � ij means the pairwise label of a pair of data points x i 
nd x j , which is labeled as � i j = 1 for a similar pair (with kinship)

nd � i j = −1 for a dissimilar pair (without kinship). In practice, to

olve the optimization problem (2) , iterative Bregman projections

re employed to project the present solution onto a single con-

traint by the following scheme: 

 t+1 = M t + β M t (x i − x j )(x i − x j ) 
T M t , (3) 

n which β is a projection variable which is controlled by both the

earning rate and the pairwise label of a pair of data points. 

.2. SILD 

Side-information based linear discriminant analysis 

SILD) [69] makes use of the side-information of pairs of data

oints to estimate the within-class scatter matrix C p by employing

ositive pairs and the between-class scatter matrix C n by using

egative pairs in training set: 

 p = 

∑ 

� i j =1 
(x i − x j )(x i − x j ) 

T , (4) 

 n = 

∑ 

� i j = −1 
(x i − x j )(x i − x j ) 

T . (5) 

hen, SILD learns a discriminative linear projection W ∈ R 

d×m , m

d by solving the optimization problem: 

ax 
W 

det (W 

T C n W ) 

det (W 

T C p W ) 
. (6) 

y diagonalizing C p and C n as: 

 p = UD p U 

T , (UD 

−1 / 2 
p ) T C p (UD 

−1 / 2 
p ) = I , (7) 

(UD 

−1 / 2 
p ) T C n (UD 

−1 / 2 
p ) = VD n V 

T , (8) 

he projection matrix W can be computed as: 

 = UD 

−1 / 2 
p V , (9) 
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Father-Son

Father-Daughter

Mother-Son

Mother-Daughter

Fig. 2. Cropped face images of our KFVW dataset. Each row lists three face images 

of a video. From top to bottom are Father-Son (F-S), Father-Daughter (F-D), Mother- 

Son (M-S) and Mother-Daughter (M-D) kin relationships, respectively. 
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in which matrices U and V are orthogonal, and matrices D p and D n 

are diagonal. In the transformed subspace, the squared Euclidean

distance of a pair of data points x i and x j is calculated by: 

d 2 W 

(x i , x j ) = 

∥∥W 

T x i − W 

T x j 

∥∥2 

2 

= (x i − x j ) 
T WW 

T (x i − x j ) 

= (x i − x j ) 
T M (x i − x j ) . (10)

This distance is equivalent to computing the squared Mahalanobis

distance in the original space, and we have M = WW 

T . 

4.3. KISSME 

Keep it simple and straightforward (KISS) metric learning

(KISSME) [28] method aims to learn a distance metric from the

perspective of statistical inference. KISSME makes the statisti-

cal decision whether a pair of data points x i and x j is dissimi-

lar/negative or not by using the scheme of likelihood ratio test. The

hypothesis H 0 states that a pair of data points is dissimilar, and the

hypothesis H 1 states that this pair is similar. The log-likelihood ra-

tio is shown as: 

δ(x i , x j ) = log 

(
p(x i , x j |H 0 ) 

p(x i , x j |H 1 ) 

)
, (11)

where p(x i , x j |H 0 ) is the probability distribution function of a pair

of data points under the hypothesis H 0 . The hypothesis H 0 is ac-

cepted if δ( x i , x j ) is larger than a nonnegative constant, other-

wise the hypothesis H 0 is rejected and this pair is similar. By as-

suming the single Gaussian distribution of the pairwise difference

z i j = x i − x j and relaxing the problem (11) , δ( x i , x j ) is simplified

as: 

δ(x i , x j ) = (x i − x j ) 
T (C 

−1 
p − C 

−1 
n )(x i − x j ) , (12)

in which the covariance matrices C p and C n are computed by

Eqs. (4) and (5) respectively. 

To achieve the PSD Mahalanobis matrix M , KISSME projects
ˆ M = C 

−1 
p − C 

−1 
n onto the cone of the positive semi-definite matrix

M by clipping the spectrum of ˆ M via the scheme of eigenvalue de-

composition. 

4.4. CSML 

Unlike above three metric learning methods, cosine similarity

metric learning (CSML) [70] method hopes to achieve a transfor-

mation W ∈ R 

d×m with m ≤ d to compute cosine similarity of a

pair of data points in the transformed subspace: 

cs W 

(x i , x j ) = 

(W 

T x i ) 
T (W 

T x j ) 

‖ W 

T x i ‖ ‖ W 

T x j ‖ 

= 

x i 
T WW 

T x j √ 

x i 
T WW 

T x i 

√ 

x j 
T WW 

T x j 

. (13)

To obtain W , CSML minimizes the cross-validation error and for-

mulates the following objective function: 

max 
W 

F (W ) = 

∑ 

� i j =1 

cs W 

(x i , x j ) 

− α
∑ 

� i j = −1 

cs W 

(x i , x j ) − β‖ W − W 0 ‖ 

2 , (14)

in which W 0 is a prior matrix, the nonnegative constant α weights

the contributions of positive pairs and negative pairs to the mar-

gin, and β balances the tradeoff between the regularization term

‖ W − W 0 ‖ 2 and margin. Last, the gradient-based scheme is em-

ployed to find the solution W . Ref. [70] provides more details of

the optimization on solving CSML method. 
. Experiments 

In this section, we evaluated several state-of-the-art metric

earning methods for video-based kinship verification on the KFVW

ataset, and provided some baseline results on this dataset. 

.1. Experimental settings 

For a video, we first detected face region of interest in each

rame using a popular face detector described in [71] , and then

esized and cropped each face region into the size of 64 × 64 pix-

ls. Table 2 shows the detected faces of several videos. In our ex-

eriments, if the number of frames of a video is more than 100,

e just randomly detected 100 frames of this video. All cropped

ace images were converted to gray-scale, and we extracted the lo-

al binary patterns (LBP) [72] on these images. For each cropped

ace image of a video, we divided each image into 8 × 8 non-
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Table 3 

The EER (%) and AUC (%) of several metric learning methods using LBP 

feature on the KFVW dataset. 

Method Measure F-S F-D M-S M-D Mean 

Euclidean EER 43 .81 48 .10 43 .50 44 .09 44 .87 

AUC 60 .49 56 .02 57 .83 58 .91 58 .31 

ITML EER 42 .86 44 .29 40 .50 42 .73 42 .59 

AUC 59 .11 56 .79 61 .50 63 .08 60 .12 

SILD EER 42 .86 42 .86 43 .00 44 .09 43 .20 

AUC 62 .64 60 .71 58 .47 59 .04 60 .21 

KISSME EER 40 .00 44 .76 43 .50 42 .73 42 .75 

AUC 63 .68 60 .06 57 .08 58 .56 59 .85 

CSML EER 38 .57 47 .14 38 .50 43 .18 41 .85 

AUC 66 .23 57 .11 64 .36 59 .62 61 .83 
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Table 4 

The EER (%) and AUC (%) of several metric learning methods using HOG 

feature on the KFVW dataset. 

Method Measure F-S F-D M-S M-D Mean 

Euclidean EER 47 .14 47 .62 45 .00 42 .73 45 .62 

AUC 56 .44 54 .85 54 .84 59 .30 56 .36 

ITML EER 47 .14 48 .10 45 .00 41 .82 45 .51 

AUC 55 .98 54 .09 57 .09 59 .08 56 .56 

SILD EER 43 .33 43 .81 42 .00 43 .18 43 .08 

AUC 59 .66 57 .04 59 .68 59 .74 59 .03 

KISSME EER 44 .76 44 .29 43 .00 45 .91 44 .49 

AUC 58 .39 57 .85 61 .04 56 .77 58 .51 

CSML EER 42 .86 47 .62 45 .00 44 .09 44 .89 

AUC 59 .51 56 .07 59 .76 59 .79 58 .78 
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verlapping blocks, in which the size of each block is 8 × 8 pix-

ls, and then we extracted a 59-bin uniform pattern LBP histogram

or each block and concatenated histograms of all blocks to form

 3776-dimensional feature vector. To obtain the feature represen-

ation for each cropped face video, we averaged the feature vec-

ors of all frames within this video to form a mean feature vector

n this benchmark. Then, principal component analysis (PCA) was

mployed to reduce dimensionality of each vector to 100 dimen-

ion. 

In this benchmark, we used all positive pairs for each kinship

elation, and also generated the same number of negative pairs.

he positive pair (or true pair) means that there is a kinship re-

ation between a pair of face videos. The negative pair (or false

air) denotes that there is not a kinship relation between a pair

f face videos. Specifically, a negative pair consists of two videos,

ne was randomly selected from the parents’ set, and another who

s not his/her true child was randomly selected children’s set. For

ach kinship relation, we randomly took 80% of video pairs for

odel training and the rest 20% pairs for testing. We repeated this

rocedure 10 times, and recorded the Receiver Operating Charac-

eristic (ROC) curve for performance evaluation, under which two

easures: the Equal Error Rate (EER) and the Area Under an ROC

urve (AUC) were adopted to report the performance of various

etric learning methods for video-based kinship verification. Note

hat small EER and large AUC show high performance of a method.

.2. Results and analysis 

This subsection presents the results and analysis of different

ethods on KFVW dataset for video-based kinship verification. 

.2.1. Comparisons of different metric learning methods 

We first evaluated several metric learning methods using LBP

eatures for video-based kinship verification, and provided the

aseline results on the KFVW dataset. The baseline methods in-

lude Euclidean, ITML [68] , SILD [69] , KISSME [28] , and CSML [70] .

he Euclidean method means that the similarity/dissimilarity be-

ween a pair of face videos is computed by Euclidean distance in

he original space. The metric learning method first learns a dis-

ance metric from the training data itself, and then employs this

earned distance metric to calculate the distance of a pair of videos

rom the testing data. Table 3 shows the EER (%) and AUC (%) of

hese metric learning methods using LBP feature on the KFVW

ataset. From this table, we see that (1) CSML obtains the best

erformance in terms of the mean EER and mean AUC, and also

chieves the best EER and AUC on the F-S and M-S subsets; (2)

TML shows the best performance on the M-D subset; (3) SILD ob-

ains the best EER and AUC on the F-D subset; (4) all metric learn-

ng based methods, i.e., ITML, SILD, KISSME and CSML, outperform

uclidean method in terms of the EER and AUC; (5) most of meth-

ds achieve the best performance on F-S subset compared with
ther three subsets; and (6) the best EER is merely about 38.5%,

nd thus video-based kinship verification on the KFVW dataset is

xtremely challenging. Moreover, Fig. 3 plots ROC curves of several

etric learning methods using LBP feature on the KFVW dataset

or four types of kinship relations. 

.2.2. Comparisons of different feature descriptors 

We also evaluated several state-of-the-art metric learning

ethods using different feature descriptors. To this end, we ex-

racted the histogram of oriented gradients (HOG) [73] from two

ifferent scales for each cropped face image. Specifically, we first

ivided each image into 16 × 16 non-overlapping blocks, where

he size of each block is 4 × 4 pixels. Then, we divided each image

nto 8 × 8 non-overlapping blocks, where the size of each block

s 8 × 8. Subsequently, we extracted a 9-dimensional HOG fea-

ure for each block and concatenated HOGs of all blocks to form

 2880-dimensional feature vector. Following the same procedure

s in extracting LBP, for a cropped face video, we averaged the fea-

ure vectors of all frames within this video to yield a mean feature

ector as the final feature representation. Then, PCA was employed

o reduce dimensionality of each vector to 100 dimension. 

Table 4 reports the EER (%) and AUC (%) of several metric learn-

ng methods using HOG feature on the KFVW dataset, and Fig. 4

hows ROC curves of these methods using HOG feature. From this

able, we see that 1) SILD achieves the best performance in terms

f the mean EER and mean AUC, and also obtains the best EER on

he F-D and M-S subsets; and 2) KISSME obtains the best AUC on

he F-D and M-S subsets. By comparing Tables 3 and 4 , we see that

etric learning methods using LBP feature outperform the same

ethods using HOG feature in terms of the mean EER and mean

UC. The reason may be that LBP feature can capture local texture

haracteristics of face images which is more useful than gradient

haracteristics extracted by HOG feature to help improve the per-

ormance of video-based kinship verification. 

.2.3. Parameter analysis 

We investigated how different dimensions of LBP feature affect

he performance of these state-of-the-art metric learning methods.

igs. 5–8 show the EER and the AUC (%) of ITML, SILD, KISSME, and

SML methods versus different dimensions of LBP feature on the

FVW dataset for four types of kin relationships, respectively. From

hese figures, we see that (1) ITML and CSML methods show the

elatively stable AUC on four subsets (i.e., F-S, F-D, M-S, and M-D)

y increasing the dimension of LBP feature from 10 to 100; and (2)

ILD and KISSME methods achieve the best AUC at dimension of 30

nd then gradually reduce AUC with the increasing of dimension

f LBP feature from 30 to 100. Therefore, we reported the EER and

he AUC of these metric learning methods at dimension of 30 on

our subsets for fair comparison. 
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Fig. 3. ROC curves of several metric learning methods using LBP feature on our KFVW dataset for four types of kinship relations. 
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Fig. 4. ROC curves of several metric learning methods using HOG feature on our KFVW dataset for four types of kinship relations. 
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Fig. 5. The EER and AUC (%) of ITML method using LBP feature on the KFVW 

dataset. 
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Fig. 6. The EER and AUC (%) of SILD method using LBP feature on the KFVW 

dataset. 

Table 5 

The mean verification accuracy (%) of human ability on 

video-based kinship verification on the KFVW dataset four 

types of kin relationships. 

Method F-S F-D M-S M-D Mean 

Test A 70 .50 66 .50 67 .50 70 .00 68 .63 

Test B 75 .00 70 .50 73 .00 73 .50 73 .00 

o  

m  

c  

c  

o  

t

5

 

w

 

 

 

 

 

 

 

 

 

.2.4. Computational cost 

We conducted experiments on a standard Windows machine

Intel i5-3470 CPU @ 3.20 GHz, and 32GB RAM) with the MAT-

AB code. Given a face video, detecting face region of interest of

 frame takes about 0.9 s, and extracting LBP feature of a cropped

ace image with size of 64 × 64 takes about 0.02 s. In model train-

ng, the training times of ITML, SILD, KISSME, and CSML methods

re around 9.6, 0.6, 0.7, and 6.5 s for each kin relationship, respec-

ively. In testing, the matching times of these methods are about

.02 s (excluding times of face detection and feature extraction)

or a pair of face videos. 

.2.5. Human observers for kinship verification 

As another baseline, we also evaluated human ability to ver-

fy kin relationship from face videos on the KFVW dataset. For

ach kinship relation, we randomly chose 20 positive pairs of face

ideos and 20 negative pairs of face videos, and displayed these

ideo pairs for ten volunteers to decide whether there is a kin rela-

ionship or not. These volunteers consist of five male students and

ve female students, whose ages range from 18 to 25 years, and

hey have not experienced any training on verifying kin relation-

hip from face videos. We designed two tests (i.e., Test A and Test

) to examine the human ability to verify kin relationship from

ace videos. In Text A, the cropped face videos were provided to

uman volunteers, and volunteers did decision making on the de-

ected face regions with size of 64 × 64 pixels. In Text B, the orig-

nal face videos were presented to volunteers, and human volun-

eers can make their decisions by exploiting multiple cues in the

hole images, e.g., skin color, hair, race, background, etc. Table 5

ists the mean verification accuracy (%) of human ability on video-

ased kinship verification for different types of kin relationships
n the KFVW dataset. We see that Test B reports better perfor-

ance Test A on four kinship relations. The reason is that Test B

an exploit more cues such as hair and background to help make

orrect make correct kinship verification. From this table, we also

bserve that human observers provide higher verification accuracy

han metric learning-based methods on KFVW dataset. 

.3. Discussions 

From experimental results shown in Tables 3–5 and Figs. 3–8 ,

e make the following observations: 

• State-of-the-art metric learning methods outperform prede-

fined metric-based method (i.e., Euclidean distance) for video-

based kinship verification. The reason is that metric learning

method can learn a distance metric from the training data it-

self to increase the similarity of a positive pair and to decrease

the similarity of a negative pair in the learned metric space. 
• LBP feature presents the better performance than HOG fea-

ture for video-based kinship verification. The reason may be

that LBP feature can encode local texture characteristics of face

images which is more useful than gradient characteristics ex-
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Fig. 7. The EER and AUC (%) of KISSME method using LBP feature on the KFVW 

dataset. 
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tracted by HOG feature to help improve the performance of

video-based kinship verification. 
• Metric leaning methods and human observers achieve the poor

performance on F-D subset compared with other three subsets,

which shows that kinship verification on F-D subset is a more

challenging task. 
• The best EER of metric learning methods is merely about 38.5%,

thus it is very challenging to advance the study of video-based

kinship verification on the KFVW dataset. 

6. Conclusion 

In this paper, we have studied the problem of video-based kin-

ship verification. To our best knowledge, this problem has not

been formally addressed in the literature. We have first presented

a new video face dataset called Kinship Face Videos in the Wild

(KFVW) which were captured in wild conditions for the video-

based kinship verification study, as well as the standard bench-

mark. Then, we have evaluated and compared the performance of

several state-of-the-art metric learning based kinship verification

methods. Lastly, we also have tested test human ability on kin-

ship verification from facial videos and experimental results show

that metric learning based computational methods are not as good

as that of human observers. Experimental results are presented to

demonstrate the efficacy of our proposed dataset and the effective-

ness of existing metric learning methods for video-based kinship

verification. 

In our future work, we plan to design more efficient feature

learning method for video face representation and advanced video-

based distance metric learning to further improve the performance

of video-based kinship verification. 
cknowledgments 
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